Seismic Imaging and Inversion

SAND has developed a family of seismic processing and inversion algorithms specifically tuned for application to high-frequency, marine near-surface seismic reflection data. Broadly these are grouped into two software suites, QSI and QSI-3D, which deal with 2D and 3D data, respectively.

The software includes bespoke imaging algorithms that have been developed to maximise the penetration and resolution of a variety of UHR marine seismic reflection data. These include algorithms capable of handling the irregular spatial sampling, high frequency content, and contamination by coherent noise (specifically source/receiver ghosts and seafloor multiples). Time and depth imaging versions are available.

However, by far the most novel component of QSI are a family of seismic inversion codes that use the amplitude, phase, and frequency content of seismic reflection data to derive quantitative information regarding the nature of the seabed and near-surface sediments. A range of different machine learning approaches can be applied, depending on the data/project requirements, permitting both bulk physical properties (e.g., P-wave velocity, bulk density, and porosity) as well as more advanced geotechnical properties (e.g., undrained shear strength, relative density, and soil classification) to be derived and mapped at a resolution controlled by the geophysical data.

These algorithms have been successfully applied to a broad spectrum of UHR marine seismic data, including Chirp, Boomer, Sparker, and Airgun sources. All inversion algorithms are cast within a stochastic framework, allowing property envelopes (i.e., 95% confidence estimates) to be provided as well as ‘best’ estimate solutions.

Please contact us with your project requirements for more details.